DISCRETE SEMICONDUCTORS

DATA SHEET

BGY118A; BGY118B; BGY118D UHF amplifier modules

Product specification Supersedes data of April 1994 File under Discrete Semiconductors, SC09 1996 May 21

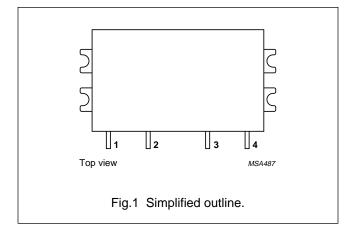
UHF amplifier modules

BGY118A; **BGY118B**; **BGY118D**

FEATURES

- Single 4.8 V nominal supply voltage
- 1.2 W output power
- Easy output power control by DC voltage
- Very high efficiency (typ. 55 %)
- · Silicon bipolar technology
- Standby current less than 100 μA.

APPLICATIONS


 Hand-held transmitting equipment operating in the 824 to 849 MHz, 872 to 905 MHz and 898 to 928 MHz frequency ranges respectively.

DESCRIPTION

The BGY118A, BGY118B and BGY118D are three-stage UHF amplifier modules in a SOT321A package. Each module consists of three NPN silicon planar transistor chips mounted together with matching and bias circuit components on a metallized ceramic substrate.

PINNING SOT321A

PIN	DESCRIPTION
1	RF input
2	V _C
3	V _S
4	RF output
Flange	ground

QUICK REFERENCE DATA

RF performance at $T_{mb} = 25$ °C.

TYPE	MODE OF OPERATION	f (MHz)	V _S (V)	P _L (W)	G _P (dB)	η (%)	Z_S, Z_L (Ω)
BGY118A	CW	824 to 849	4.8	1.2	≥27.8	typ. 55	50
BGY118B	CW	872 to 905	4.8	1.2	≥27.8	typ. 55	50
BGY118D	CW	898 to 928	4.8	1.2	≥27.8	typ. 55	50

2

UHF amplifier modules

BGY118A; BGY118B; BGY118D

LIMITING VALUES

In accordance with the Absolute Maximum Rating System (IEC 134).

SYMBOL	PARAMETER	MIN.	MAX.	UNIT
Vs	DC supply voltage	_	7	V
V _C	DC control voltage	_	3.5	V
P _D	input drive power	_	5	mW
PL	load power	_	1.6	W
T _{stg}	storage temperature	-40	+100	∞C
T _{mb}	operating mounting base temperature	-30	+100	∞C

CHARACTERISTICS

 $Z_S = Z_L = 50 \text{ W; } P_D = 2 \text{ mW; } V_S = 4.8 \text{ V; } V_C \leq 3 \text{ V; } T_{mb} = 25 \text{ }^{\circ}\text{C; } unless \text{ otherwise specified.}$

SYMBOL	PARAMETER	CONDITIONS	MIN.	TYP.	MAX.	UNIT
f	frequency					
	BGY118A		824	_	849	MHz
	BGY118B		872	_	905	MHz
	BGY118D		898	_	928	MHz
IQ	total leakage current	$V_C = 0$; $P_D < -60 \text{ dBm}$	_	_	100	μΑ
I _C	control current	adjust V _C for P _L = 1.2 W	_	_	500	μΑ
PL	load power		1.2	_	_	W
G _P	power gain	adjust V _C for P _L = 1.2 W	27.8	-	_	dB
η	efficiency	adjust V _C for P _L = 1.2 W	50	55	_	%
H ₂	second harmonic	adjust V _C for P = 1.2 W	_	_	-40	dBc
H ₃	third harmonic	adjust V _C for P _L = 1.2 W	_	_	-40	dBc
VSWR _{in}	input VSWR	adjust V _C for P _L = 1.2 W	_	_	3:1	
	stability	$P_D = 0$ to 6 dBm; $V_S = 4$ to 6.5 V; $V_C = 0$ to 3 V; $P_L \le 1.2$ W; VSWR ≤ 6 : 1 through all phases	_	_	-60	dBc
	isolation	V _C = 0	_	_	-40	dBm
P _n	noise power	adjust V_C for $P_L = 1.2$ W; bandwidth = 30 kHz; note 1	_	_	-90	dBm
	ruggedness	$V_S = 6.5 \text{ V}$; adjust V_C for $P_L = 1.4 \text{ W}$; VSWR \leq 10 : 1 through all phases	no degradation			

Note

1. BGY118A, BGY118B: $f_n = f_o + 45$ MHz. BGY118D: $f_n = f_o - 55$ MHz.

UHF amplifier modules

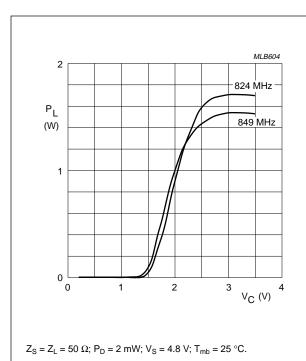
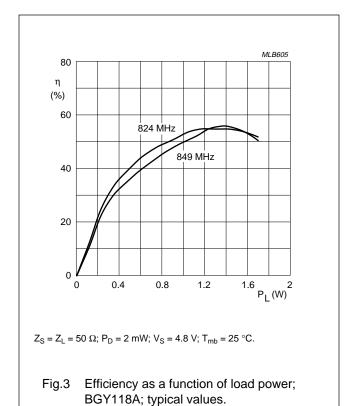
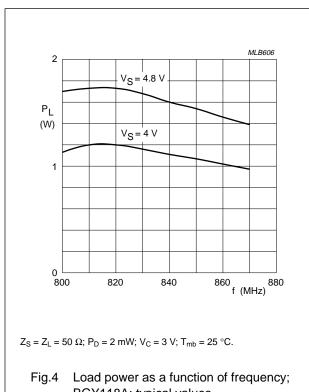
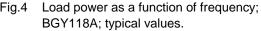
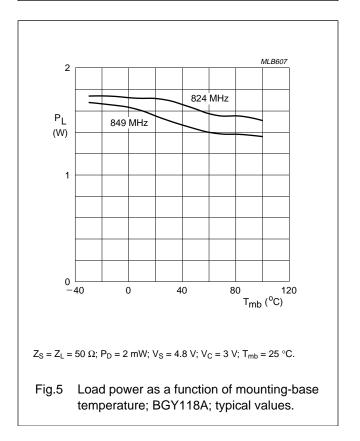






Fig.2 Load power as a function of control voltage; BGY118A; typical values.

UHF amplifier modules

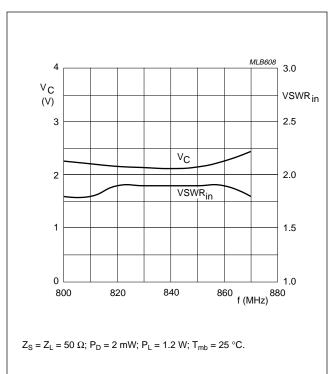


Fig.6 Control voltage and VSWR input as function of frequency; BGY118A; typical values.

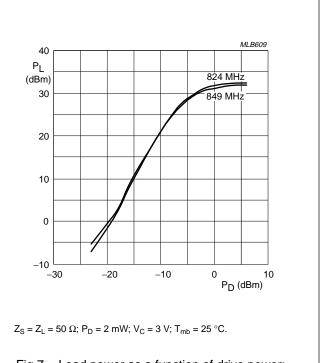
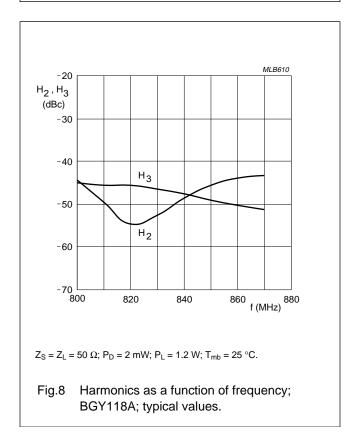
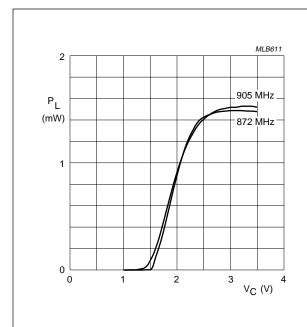




Fig.7 Load power as a function of drive power; BGY118A; typical values.

UHF amplifier modules

 Z_S = Z_L = 50 $\Omega;~P_D$ = 2 mW; V_S = 4.8 V; T_{mb} = 25 $^{\circ}C.$

Fig.9 Load power as a function of control voltage; BGY118B; typical values.

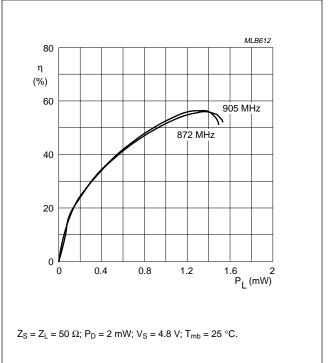


Fig.10 Efficiency as a function of load power; BGY118B; typical values.

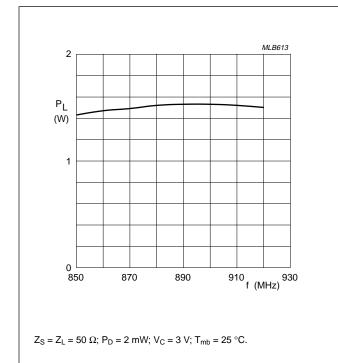
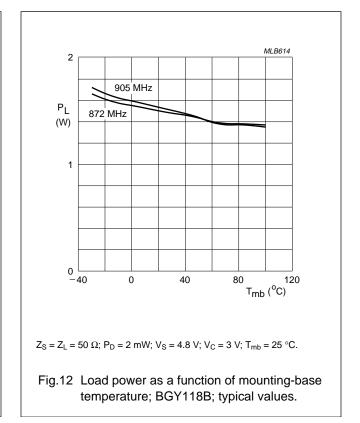



Fig.11 Load power as a function of frequency; BGY118B; typical values.

UHF amplifier modules

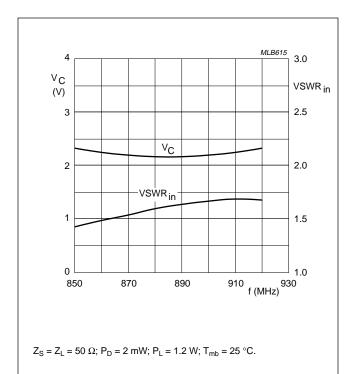


Fig.13 Control voltage and VSWR input as function of frequency; BGY118B; typical values.

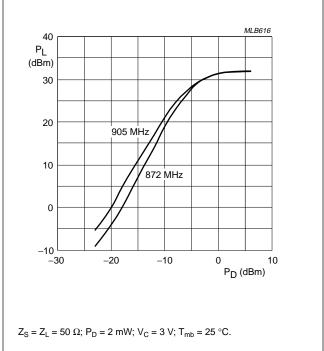
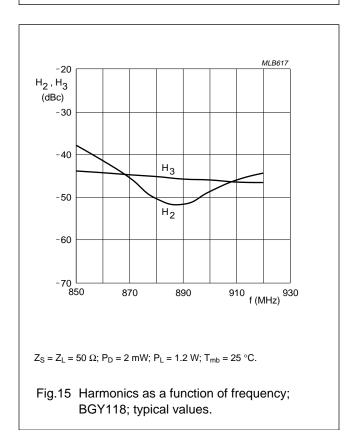
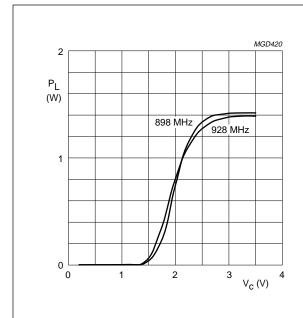




Fig.14 Load power as a function of drive power; BGY118B; typical values.

UHF amplifier modules

 Z_S = Z_L = 50 $\Omega;~P_D$ = 2 mW; V_S 4.8 V; T_{mb} = 25 $^{\circ}C.$

Fig.16 Load power as a function of control voltage; BGY118D; typical values.

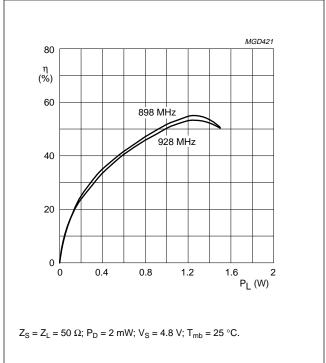
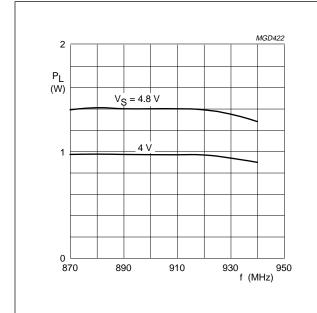



Fig.17 Efficiency as a function of load power; BGY118D; typical values.

 $Z_S = Z_L = 50~\Omega;~P_D = 2~mW;~V_S = 4.8~V;~V_C = 3~V;~T_{mb} = 25~^{\circ}C.$

Fig.18 Load power as a function of frequency; BGY118D; typical values.

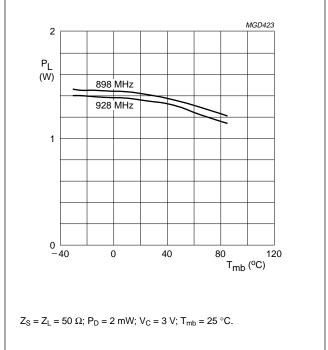


Fig.19 Load power as a function of mounting-base temperature; BGY118D; typical values.

UHF amplifier modules

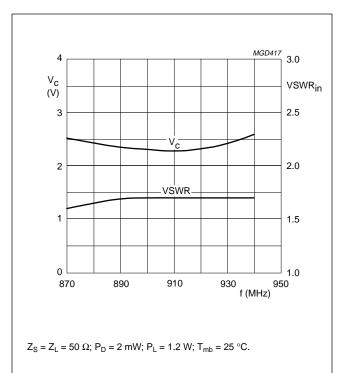
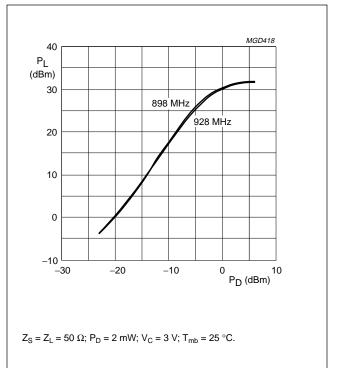
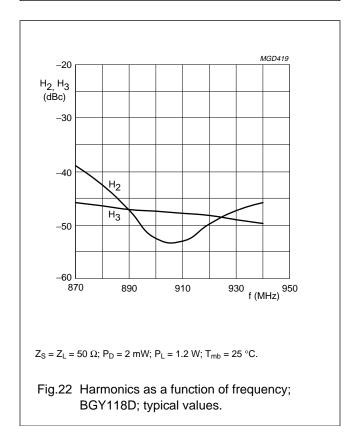
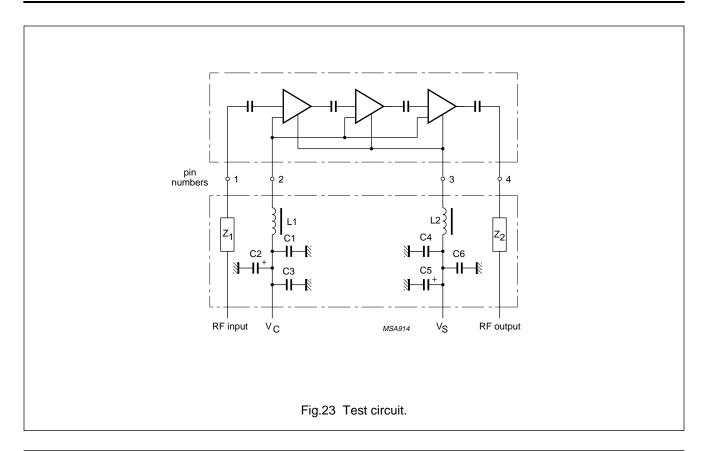
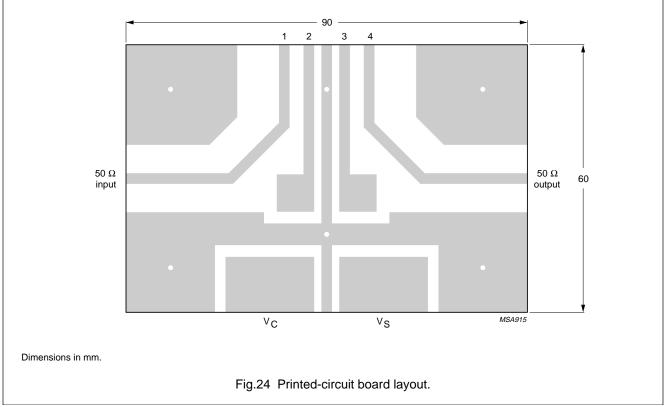


Fig.20 Control voltage and VSWR input as function of frequency; BGY118D; typical values.


Fig.21 Load power as a function of drive power; BGY118D; typical values.

UHF amplifier modules

BGY118A; BGY118B; BGY118D

UHF amplifier modules

BGY118A; BGY118B; BGY118D

List of components (See Fig.23)

COMPONENT	DESCRIPTION	VALUE	CATALOGUE NO.
C1, C4	multilayer ceramic chip capacitor	100 nF	2222 852 47104
C2, C5	tantalum capacitor	2.2 μF; 35 V	
C3, C6	multilayer ceramic chip capacitor	33 pF	2222 851 13339
L1, L2	Ferroxcube coil	5 μΗ	3122 108 20153
Z ₁ , Z ₂	stripline; note 1	50 Ω	

Note

1. The striplines are on a double copper-clad PCB with PTFE fibre-glass dielectric ($e_r = 2.2$); thickness 1/32 inch.

UHF amplifier modules

BGY118A; BGY118B; BGY118D

SOLDERING

The indicated temperatures are those at the solder interfaces.

Advised solder types are types with a liquidus less than or equal to 210 $^{\circ}\text{C}.$

Solder dots or solder prints must be large enough to wet the contact areas.

Footprints for soldering should cover the module contact area +0.1 mm on all sides.

Soldering can be carried out using a conveyor oven, a hot air oven, an infrared oven or a combination of these ovens.

Hand soldering must be avoided because the soldering iron tip can exceed the maximum permitted temperature of 250 $^{\circ}$ C and damage the module.

The maximum temperature profile and soldering time is indicated as follows (see Fig.25):

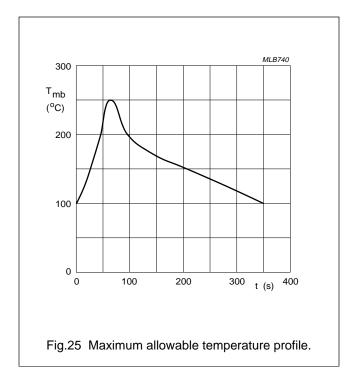
t = 350 s at 100 °C

t = 300 s at 125 °C

t = 200 s at 150 °C

t = 100 s at 175 °C

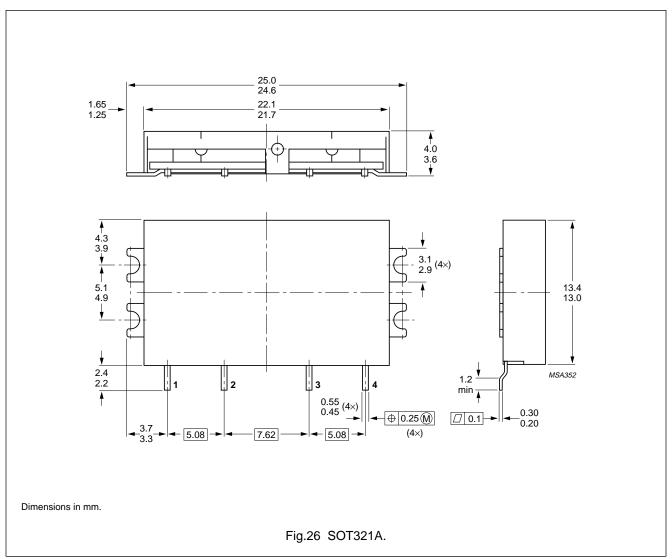
t = 50 s at 200 °C


t = 5 s at 250 °C (maximum temperature).

Cleaning

The following fluids may be used for cleaning:

- Alcohol
- Bio-Act (Terpene Hydrocarbon)
- Triclean B/S
- · Acetone.


Ultrasonic cleaning should not be used since this can cause serious damage to the product.

UHF amplifier modules

BGY118A; BGY118B; BGY118D

PACKAGE OUTLINE

UHF amplifier modules

BGY118A; BGY118B; BGY118D

DEFINITIONS

Data sheet status	
Objective specification	This data sheet contains target or goal specifications for product development.
Preliminary specification	This data sheet contains preliminary data; supplementary data may be published later.
Product specification	This data sheet contains final product specifications.
Limiting values	

Limiting values

Limiting values given are in accordance with the Absolute Maximum Rating System (IEC 134). Stress above one or more of the limiting values may cause permanent damage to the device. These are stress ratings only and operation of the device at these or at any other conditions above those given in the Characteristics sections of the specification is not implied. Exposure to limiting values for extended periods may affect device reliability.

Application information

Where application information is given, it is advisory and does not form part of the specification.

LIFE SUPPORT APPLICATIONS

These products are not designed for use in life support appliances, devices, or systems where malfunction of these products can reasonably be expected to result in personal injury. Philips customers using or selling these products for use in such applications do so at their own risk and agree to fully indemnify Philips for any damages resulting from such improper use or sale.